Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 744: 109679, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393983

RESUMO

Human liver pyruvate kinase (hlPYK) catalyzes the final step in glycolysis, the formation of pyruvate (PYR) and ATP from phosphoenolpyruvate (PEP) and ADP. Fructose 1,6-bisphosphate (FBP), a pathway intermediate of glycolysis, serves as an allosteric activator of hlPYK. Zymomonas mobilis pyruvate kinase (ZmPYK) performs the final step of the Entner-Doudoroff pathway, which is similar to glycolysis in that energy is harvested from glucose and pyruvate is generated. The Entner-Doudoroff pathway does not have FBP as a pathway intermediate, and ZmPYK is not allosterically activated. In this work, we solved the 2.4 Å X-ray crystallographic structure of ZmPYK. The protein is dimeric in solution as determined by gel filtration chromatography, but crystallizes as a tetramer. The buried surface area of the ZmPYK tetramerization interface is significantly smaller than that of hlPYK, and yet tetramerization using the standard interfaces from higher organisms provides an accessible low energy crystallization pathway. Interestingly, the ZmPYK structure showed a phosphate ion in the analogous location to the 6-phosphate binding site of FBP in hlPYK. Circular Dichroism (CD) was used to measure melting temperatures of hlPYK and ZmPYK in the absence and presence of substrates and effectors. The only significant difference was an additional phase of small amplitude for the ZmPYK melting curves. We conclude that the phosphate ion plays neither a structural or allosteric role in ZmPYK under the conditions tested. We hypothesize that ZmPYK does not have sufficient protein stability for activity to be tuned by allosteric effectors as described for rheostat positions in the allosteric homologues.


Assuntos
Piruvato Quinase , Zymomonas , Humanos , Piruvato Quinase/metabolismo , Zymomonas/metabolismo , Sítios de Ligação , Metabolismo dos Carboidratos , Piruvatos , Regulação Alostérica
2.
Biochemistry ; 62(14): 2182-2201, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37418678

RESUMO

Over 70 million people are currently at risk of developing Chagas Disease (CD) infection, with more than 8 million people already infected worldwide. Current treatments are limited and innovative therapies are required. Trypanosoma cruzi, the etiological agent of CD, is a purine auxotroph that relies on phosphoribosyltransferases to salvage purine bases from their hosts for the formation of purine nucleoside monophosphates. Hypoxanthine-guanine-xanthine phosphoribosyltransferases (HGXPRTs) catalyze the salvage of 6-oxopurines and are promising targets for the treatment of CD. HGXPRTs catalyze the formation of inosine, guanosine, and xanthosine monophosphates from 5-phospho-d-ribose 1-pyrophosphate and the nucleobases hypoxanthine, guanine, and xanthine, respectively. T. cruzi possesses four HG(X)PRT isoforms. We previously reported the kinetic characterization and inhibition of two isoforms, TcHGPRTs, demonstrating their catalytic equivalence. Here, we characterize the two remaining isoforms, revealing nearly identical HGXPRT activities in vitro and identifying for the first time T. cruzi enzymes with XPRT activity, clarifying their previous annotation. TcHGXPRT follows an ordered kinetic mechanism with a postchemistry event as the rate-limiting step(s) of catalysis. Its crystallographic structures reveal implications for catalysis and substrate specificity. A set of transition-state analogue inhibitors (TSAIs) initially developed to target the malarial orthologue were re-evaluated, with the most potent compound binding to TcHGXPRT with nanomolar affinity, validating the repurposing of TSAIs to expedite the discovery of lead compounds against orthologous enzymes. We identified mechanistic and structural features that can be exploited in the optimization of inhibitors effective against TcHGPRT and TcHGXPRT concomitantly, which is an important feature when targeting essential enzymes with overlapping activities.


Assuntos
Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Pentosiltransferases/metabolismo , Purinas/farmacologia , Purinas/química , Guanina/metabolismo
3.
J Am Chem Soc ; 144(28): 12769-12780, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35802469

RESUMO

RibB (3,4-dihydroxy-2-butanone 4-phosphate synthase) is a magnesium-dependent enzyme that excises the C4 of d-ribulose-5-phosphate (d-Ru5P) as formate. RibB generates the four-carbon substrate for lumazine synthase that is incorporated into the xylene moiety of lumazine and ultimately the riboflavin isoalloxazine. The reaction was first identified by Bacher and co-workers in the 1990s, and their chemical mechanism hypothesis became canonical despite minimal direct evidence. X-ray crystal structures of RibB typically show two metal ions when solved in the presence of non-native metals and/or liganding non-substrate analogues, and the consensus hypothetical mechanism has incorporated this cofactor set. We have used a variety of biochemical approaches to further characterize the chemistry catalyzed by RibB from Vibrio cholera (VcRibB). We show that full activity is achieved at metal ion concentrations equal to the enzyme concentration. This was confirmed by electron paramagnetic resonance of the enzyme reconstituted with manganese and crystal structures liganded with Mn2+ and a variety of sugar phosphates. Two transient species prior to the formation of products were identified using acid quench of single turnover reactions in combination with NMR for singly and fully 13C-labeled d-Ru5P. These data indicate that dehydration of C1 forms the first transient species, which undergoes rearrangement by a 1,2 migration, fusing C5 to C3 and generating a hydrated C4 that is poised for elimination as formate. Structures determined from time-dependent Mn2+ soaks of VcRibB-d-Ru5P crystals show accumulation in crystallo of the same intermediates. Collectively, these data reveal for the first time crucial transient chemical states in the mechanism of RibB.


Assuntos
Transferases Intramoleculares , Riboflavina , Butanonas , Formiatos , Transferases Intramoleculares/química , Fosfatos , Riboflavina/biossíntese , Riboflavina/química , Riboflavina Sintase/química
4.
J Biol Inorg Chem ; 27(6): 541-551, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35513576

RESUMO

Pseudomonas aeruginosa is an increasingly antibiotic-resistant pathogen that causes severe lung infections, burn wound infections, and diabetic foot infections. P. aeruginosa produces the siderophore pyochelin through the use of a non-ribosomal peptide synthetase (NRPS) biosynthetic pathway. Targeting members of siderophore NRPS proteins is one avenue currently under investigation for the development of new antibiotics against antibiotic-resistant organisms. Here, the crystal structure of the pyochelin adenylation domain PchD is reported. The structure was solved to 2.11 Å when co-crystallized with the adenylation inhibitor 5'-O-(N-salicylsulfamoyl)adenosine (salicyl-AMS) and to 1.69 Å with a modified version of salicyl-AMS designed to target an active site cysteine (4-cyano-salicyl-AMS). In the structures, PchD adopts the adenylation conformation, similar to that reported for AB3403 from Acinetobacter baumannii.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fenóis , Pseudomonas aeruginosa/metabolismo , Salicilatos/metabolismo , Sideróforos/química , Tiazóis
5.
Protein Sci ; 31(2): 357-370, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34734672

RESUMO

Some protein positions play special roles in determining the magnitude of protein function: at such "rheostat" positions, varied amino acid substitutions give rise to a continuum of functional outcomes, from wild type (or enhanced), to intermediate, to loss of function. This observed range raises interesting questions about the biophysical bases by which changes at single positions have such varied outcomes. Here, we assessed variants at position 98 in human aldolase A ("I98X"). Despite being ~17 Å from the active site and far from subunit interfaces, substitutions at position 98 have rheostatic contributions to the apparent cooperativity (nH ) associated with fructose-1,6-bisphosphate substrate binding and moderately affected binding affinity. Next, we crystallized representative I98X variants to assess structural consequences. Residues smaller than the native isoleucine (cysteine and serine) were readily accommodated, and the larger phenylalanine caused only a slight separation of the two parallel helixes. However, the diffraction quality was reduced for I98F, and further reduced for I98Y. Intriguingly, the resolutions of the I98X structures correlated with their nH values. We propose that substitution effects on both nH and crystal lattice disruption arise from changes in the population of aldolase A conformations in solution. In combination with results computed for rheostat positions in other proteins, the results from this study suggest that rheostat positions accommodate a wide range of side chains and that structural consequences manifest as shifted ensemble populations and/or dynamics changes.


Assuntos
Frutose-Bifosfato Aldolase , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/genética , Humanos , Mutação de Sentido Incorreto , Conformação Proteica
6.
Biochemistry ; 60(40): 3027-3039, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34569786

RESUMO

Guanosine triphosphate (GTP) cyclohydrolase II (RibA) is one of three enzymes that hydrolytically cleave the C8-N9 bond of the GTP guanine. RibA also catalyzes a subsequent hydrolytic attack at the base liberating formate and in addition cleaves the α-ß phosphodiester bond of the triphosphate to form pyrophosphate (PPi). These hydrolytic reactions are promoted by tandem active-site metal ions, zinc and magnesium, that respectively function at the GTP guanine and triphosphate moieties. The RibA reaction is part of riboflavin biosynthesis and forms 2,5-diamino-6-ß-pyrimidinone 5'-phosphate, an exocyclic pyrimidine nucleotide that ultimately forms the pyrimidine ring of the isoalloxazine of riboflavin. The stoichiometry of the RibA reaction was defined in the study that first identified this activity in Escherichia coli (Foor, F., Brown, G. M. J. Biol. Chem., 1975, 250, 9, 3545-3551) and has not been quantitatively evaluated in subsequent works. Using primarily transient state approaches we examined the interaction of RibA from E. coli with the GTP, inosine triphosphate, and PPi. Our data indicate that PPi is a slow substrate for RibA that is cleaved to form two phosphate ions (Pi). A combination of real-time enzymatically coupled Pi reporter assays and end-point 31P NMR revealed that Pi is formed at a catalytically relevant rate in the native reaction of RibA with GTP, redefining the reaction stoichiometry. Furthermore, our data indicate that both PPi and GTP stimulate conformational changes prior to hydrolytic chemistry, and we conclude that the cleavage of PPi bound as a substrate or an intermediate state results in conformational relaxation.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , GTP Cicloidrolase/química , Biocatálise , Difosfatos/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Cicloidrolase/metabolismo , Guanosina Trifosfato/metabolismo , Inosina Trifosfato/metabolismo , Cinética , Ligação Proteica , Pirofosfatases/química , Pirofosfatases/metabolismo
7.
Biochemistry ; 59(41): 4039-4050, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32941008

RESUMO

The tumor suppressor Adenomatous polyposis coli (APC) is a large, multidomain protein with many identified cellular functions. The best characterized role of APC is to scaffold a protein complex that negatively regulates Wnt signaling via ß-catenin destruction. This destruction is mediated by ß-catenin binding to centrally located 15- and 20-amino acid repeat regions of APC. More than 80% of cancers of the colon and rectum present with an APC mutation. Most carcinomas with mutant APC express a truncated APC protein that retains the ∼200-amino acid long' 15-amino acid repeat region'. This study demonstrates that the 15-amino acid repeat region of APC is intrinsically disordered. We investigated the backbone dynamics in the presence of ß-catenin and predicted residues that may contribute to transient secondary features. This study reveals that the 15-amino acid region of APC retains flexibility upon binding ß-catenin and that APC does not have a single, observable "highest-affinity" binding site for ß-catenin. This flexibility potentially allows ß-catenin to be more readily captured by APC and then remain accessible to other elements of the destruction complex for subsequent processing.


Assuntos
Proteína da Polipose Adenomatosa do Colo/química , Proteína da Polipose Adenomatosa do Colo/metabolismo , beta Catenina/metabolismo , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Sítios de Ligação , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Mutação/genética , Fosforilação , Ligação Proteica , beta Catenina/química , beta Catenina/genética
8.
Biochemistry ; 59(21): 2022-2031, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32368901

RESUMO

Cysteine dioxygenase (CDO) structurally resembles cupin enzymes that use a 3-His/1-Glu coordination scheme. However, the glutamate ligand is substituted with a cysteine (Cys93) residue, which forms a thioether bond with tyrosine (Tyr157) under physiological conditions. The reversion variant, C93E CDO, was generated in order to reestablish the more common 3-His/1-Glu metal ligands of the cupin superfamily. This variant provides a framework for testing the structural and functional significance of Cys93 and the cross-link in CDO. Although dioxygen consumption was observed with C93E CDO, it was not coupled with l-cysteine oxidation. Substrate analogues (d-cysteine, cysteamine, and 3-mercaptopropionate) were not viable substrates for the C93E CDO variant, although they showed variable coordinations to the iron center. The structures of C93E and cross-linked and non-cross-linked wild-type CDO were solved by X-ray crystallography to 1.91, 2.49, and 2.30 Å, respectively. The C93E CDO variant had similar overall structural properties compared to cross-linked CDO; however, the iron was coordinated by a 3-His/1-Glu geometry, leaving only two coordination sites available for dioxygen and bidentate l-cysteine binding. The hydroxyl group of Tyr157 shifted in both non-cross-linked and C93E CDO, and this displacement prevented the residue from participating in substrate stabilization. Based on these results, the divergence of the metal center of cysteine dioxygenase from the 3-His/1-Glu geometry seen with many cupin enzymes was essential for effective substrate binding. The substitution of Glu with Cys in CDO allows for a third coordination site on the iron for bidentate cysteine and monodentate oxygen binding.


Assuntos
Cisteína Dioxigenase/metabolismo , Cisteína/metabolismo , Compostos Férricos/metabolismo , Histidina/metabolismo , Oxigênio/metabolismo , Cristalografia por Raios X , Cisteína/química , Cisteína Dioxigenase/química , Compostos Férricos/química , Histidina/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Oxigênio/química
9.
J Biol Chem ; 294(47): 17988-18001, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31615895

RESUMO

Pseudopaline and staphylopine are opine metallophores biosynthesized by Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The final step in opine metallophore biosynthesis is the condensation of the product of a nicotianamine (NA) synthase reaction (i.e. l-HisNA for pseudopaline and d-HisNA for staphylopine) with an α-keto acid (α-ketoglutarate for pseudopaline and pyruvate for staphylopine), which is performed by an opine dehydrogenase. We hypothesized that the opine dehydrogenase reaction would be reversible only for the opine metallophore product with (R)-stereochemistry at carbon C2 of the α-keto acid (prochiral prior to catalysis). A kinetic analysis using stopped-flow spectrometry with (R)- or (S)-staphylopine and kinetic and structural analysis with (R)- and (S)-pseudopaline confirmed catalysis in the reverse direction for only (R)-staphylopine and (R)-pseudopaline, verifying the stereochemistry of these two opine metallophores. Structural analysis at 1.57-1.85 Å resolution captured the hydrolysis of (R)-pseudopaline and allowed identification of a binding pocket for the l-histidine moiety of pseudopaline formed through a repositioning of Phe-340 and Tyr-289 during the catalytic cycle. Transient-state kinetic analysis revealed an ordered release of NADP+ followed by staphylopine, with staphylopine release being the rate-limiting step in catalysis. Knowledge of the stereochemistry for opine metallophores has implications for future studies involving kinetic analysis, as well as opine metallophore transport, metal coordination, and the generation of chiral amines for pharmaceutical development.


Assuntos
Biocatálise , Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Oxirredutases/metabolismo , Pseudomonas aeruginosa/enzimologia , Staphylococcus aureus/enzimologia , Fluorescência , Hidrólise , Imidazóis/química , Íons , Ácidos Cetoglutáricos/metabolismo , Cinética , Metais/farmacologia , Modelos Moleculares , Oligopeptídeos/química , Estereoisomerismo
10.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 6): 461-469, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204694

RESUMO

Human liver pyruvate kinase (hLPYK) converts phosphoenolpyruvate to pyruvate in the final step of glycolysis. hLPYK is allosterically activated by fructose-1,6-bisphosphate (Fru-1,6-BP). The allosteric site, as defined by previous structural studies, is located in domain C between the phosphate-binding loop (residues 444-449) and the allosteric loop (residues 527-533). In this study, the X-ray crystal structures of four hLPYK variants were solved to make structural correlations with existing functional data. The variants are D499N, W527H, Δ529/S531G (called GGG here) and S531E. The results revealed a conformational toggle between the open and closed positions of the allosteric loop. In the absence of Fru-1,6-BP the open position is stabilized, in part, by a cation-π bond between Trp527 and Arg538' (from an adjacent monomer). In the S531E variant glutamate binds in place of the 6'-phosphate of Fru-1,6-BP in the allosteric site, leading to partial allosteric activation. Finally, the structure of the D499N mutant does not provide structural evidence for the previously observed allosteric activation of the D499N variant.


Assuntos
Cátions/química , Frutosedifosfatos/metabolismo , Fígado/enzimologia , Mutação , Piruvato Quinase/química , Piruvato Quinase/metabolismo , Sítio Alostérico , Sítios de Ligação , Cristalografia por Raios X , Frutosedifosfatos/química , Humanos , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas , Piruvato Quinase/genética
11.
Arch Biochem Biophys ; 664: 40-50, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30689984

RESUMO

The hydroxyornithine transformylase from Pseudomonas aeruginosa is known by the gene name pvdF, and has been hypothesized to use N10-formyltetrahydrofolate (N10-fTHF) as a co-substrate formyl donor to convert N5-hydroxyornithine (OHOrn) to N5-formyl- N5-hydroxyornithine (fOHOrn). PvdF is in the biosynthetic pathway for pyoverdin biosynthesis, a siderophore generated under iron-limiting conditions that has been linked to virulence, quorum sensing and biofilm formation. The structure of PvdF was determined by X-ray crystallography to 2.3 Å, revealing a formyltransferase fold consistent with N10-formyltetrahydrofolate dependent enzymes, such as the glycinamide ribonucleotide transformylases, N-sugar transformylases and methionyl-tRNA transformylases. Whereas the core structure, including the catalytic triad, is conserved, PvdF has three insertions of 18 or more amino acids, which we hypothesize are key to binding the OHOrn substrate. Steady state kinetics revealed a non-hyperbolic rate curve, promoting the hypothesis that PvdF uses a random-sequential mechanism, and favors folate binding over OHOrn.


Assuntos
Formiltetra-Hidrofolatos/metabolismo , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/metabolismo , Oligopeptídeos/biossíntese , Ácido Fólico/metabolismo , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa/enzimologia
12.
Protein Sci ; 28(1): 123-134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171650

RESUMO

The π-helix located at the tetramer interface of two-component FMN-dependent reductases contributes to the structural divergence from canonical FMN-bound reductases within the NADPH:FMN reductase family. The π-helix in the SsuE FMN-dependent reductase of the alkanesulfonate monooxygenase system has been proposed to be generated by the insertion of a Tyr residue in the conserved α4-helix. Variants of Tyr118 were generated, and their X-ray crystal structures determined, to evaluate how these alterations affect the structural integrity of the π-helix. The structure of the Y118A SsuE π-helix was converted to an α-helix, similar to the FMN-bound members of the NADPH:FMN reductase family. Although the π-helix was altered, the FMN binding region remained unchanged. Conversely, deletion of Tyr118 disrupted the secondary structural properties of the π-helix, generating a random coil region in the middle of helix 4. Both the Y118A and Δ118 SsuE SsuE variants crystallize as a dimer. The MsuE FMN reductase involved in the desulfonation of methanesulfonates is structurally similar to SsuE, but the π-helix contains a His insertional residue. Exchanging the π-helix insertional residue of each enzyme did not result in equivalent kinetic properties. Structure-based sequence analysis further demonstrated the presence of a similar Tyr residue in an FMN-bound reductase in the NADPH:FMN reductase family that is not sufficient to generate a π-helix. Results from the structural and functional studies of the FMN-dependent reductases suggest that the insertional residue alone is not solely responsible for generating the π-helix, and additional structural adaptions occur to provide the altered gain of function.


Assuntos
Proteínas de Bactérias/química , FMN Redutase/química , Mononucleotídeo de Flavina/química , Mutação de Sentido Incorreto , NADP/química , Multimerização Proteica , Pseudomonas aeruginosa/enzimologia , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , FMN Redutase/genética , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/genética
13.
Biochemistry ; 58(6): 665-678, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30525512

RESUMO

Nonribosomal peptide synthetases use tailoring domains to incorporate chemical diversity into the final natural product. A structurally unique set of tailoring domains are found to be stuffed within adenylation domains and have only recently begun to be characterized. PchF is the NRPS termination module in pyochelin biosynthesis and includes a stuffed methyltransferase domain responsible for S-adenosylmethionine (AdoMet)-dependent N-methylation. Recent studies of stuffed methyltransferase domains propose a model in which methylation occurs on amino acids after adenylation and thiolation rather than after condensation to the nascent peptide chain. Herein, we characterize the adenylation and stuffed methyltransferase didomain of PchF through the synthesis and use of substrate analogues, steady-state kinetics, and onium chalcogen effects. We provide evidence that methylation occurs through an SN2 reaction after thiolation, condensation, cyclization, and reduction of the module substrate cysteine and is the penultimate step in pyochelin biosynthesis.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Peptídeo Sintases/química , Fenóis/química , Tiazóis/química , Proteínas de Bactérias/isolamento & purificação , Catálise , Catecol O-Metiltransferase/química , Escherichia coli/genética , Cinética , Methanocaldococcus/enzimologia , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/isolamento & purificação , Metilação , Metiltransferases/isolamento & purificação , Peptídeo Sintases/isolamento & purificação , Fenóis/síntese química , Domínios Proteicos , Pseudomonas aeruginosa/enzimologia , S-Adenosilmetionina/análogos & derivados , Tiazóis/síntese química
14.
J Biol Chem ; 293(21): 8009-8019, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29618515

RESUMO

Opine dehydrogenases (ODHs) from the bacterial pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and Yersinia pestis perform the final enzymatic step in the biosynthesis of a new class of opine metallophores, which includes staphylopine, pseudopaline, and yersinopine, respectively. Growing evidence indicates an important role for this pathway in metal acquisition and virulence, including in lung and burn-wound infections (P. aeruginosa) and in blood and heart infections (S. aureus). Here, we present kinetic and structural characterizations of these three opine dehydrogenases. A steady-state kinetic analysis revealed that the three enzymes differ in α-keto acid and NAD(P)H substrate specificity and nicotianamine-like substrate stereoselectivity. The structural basis for these differences was determined from five ODH X-ray crystal structures, ranging in resolution from 1.9 to 2.5 Å, with or without NADP+ bound. Variation in hydrogen bonding with NADPH suggested an explanation for the differential recognition of this substrate by these three enzymes. Our analysis further revealed candidate residues in the active sites required for binding of the α-keto acid and nicotianamine-like substrates and for catalysis. This work reports the first structural kinetic analyses of enzymes involved in opine metallophore biosynthesis in three important bacterial pathogens of humans.


Assuntos
Imidazóis/metabolismo , Oligopeptídeos/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Pseudomonas aeruginosa/enzimologia , Staphylococcus aureus/enzimologia , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa/genética , Staphylococcus aureus/genética , Especificidade por Substrato
15.
Trends Biochem Sci ; 43(5): 342-357, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573882

RESUMO

The menaquinone, siderophore, and tryptophan (MST) enzymes transform chorismate to generate precursor molecules for the biosynthetic pathways defined in their name. Kinetic data, both steady-state and transient-state, and X-ray crystal structures indicate that these enzymes are highly conserved both in mechanism and in structure. Because these enzymes are found in pathogens but not in humans, there is considerable interest in these enzymes as drug design targets. While great progress has been made in defining enzyme structure and mechanism, inhibitor design has lagged behind. This review provides a detailed description of the evidence that begins to unravel the mystery of how the MST enzymes work, and how that information has been used in inhibitor design.


Assuntos
Liases/metabolismo , Sideróforos/metabolismo , Triptofano/metabolismo , Vitamina K 2/metabolismo , Humanos , Cinética , Liases/química , Modelos Moleculares , Sideróforos/química , Triptofano/química , Vitamina K 2/química
16.
Curr Opin Struct Biol ; 53: 1-11, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29455106

RESUMO

Microbes synthesize small, iron-chelating molecules known as siderophores to acquire iron from the environment. One way siderophores are generated is by nonribosomal peptide synthetases (NRPSs). The bioactive peptides generated by NRPS enzymes have unique chemical features, which are incorporated by accessory and tailoring domains or proteins. The first part of this review summarizes recent progress in NRPS structural biology. The second part uses the biosynthesis of pyochelin, a siderophore from Pseudomonas aeruginosa, as a case study to examine enzymatic methods for generating the observed diversity in NRPS-derived natural products.


Assuntos
Proteínas de Bactérias/metabolismo , Peptídeo Sintases , Fenóis/metabolismo , Pseudomonas aeruginosa , Tiazóis/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo
17.
Biochemistry ; 56(45): 5967-5971, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29091735

RESUMO

Bacterial pathogenesis frequently requires metal acquisition by specialized, small-molecule metallophores. We hypothesized that the Gram-negative Pseudomonas aeruginosa encodes the enzymes nicotianamine synthase (NAS) and opine dehydrogenase (ODH), biosynthesizing a new class of opine metallophore, previously characterized only in the unrelated Gram-positive organism Staphylococcus aureus. The identity of this metallophore, herein named pseudopaline, was determined through measurements of binding affinity, the in vitro reconstitution of the biosynthetic pathway to screen potential substrates, and the confirmation of product formation by mass spectrometry. Pseudopaline and the S. aureus metallophore staphylopine exhibit opposite stereochemistry for the histidine moiety, indicating unique recognition by NAS. Additionally, we demonstrate SaODH catalysis in the presence of pyruvate, as previously shown, but also oxaloacetate, suggesting the potential for the production of a variant form of staphylopine, while PaODH specifically recognizes α-ketoglutarate. Both the staphylopine and pseudopaline operons have been implicated in the pathogenesis of key infectious disease states and warrant further study.


Assuntos
Alquil e Aril Transferases/metabolismo , Imidazóis/metabolismo , Oligopeptídeos/biossíntese , Óperon , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Pseudomonas aeruginosa/metabolismo , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Histidina/metabolismo , Metais/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento
18.
Arch Biochem Biophys ; 612: 46-56, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27769837

RESUMO

Renalase catalyzes the oxidation of isomers of ß-NAD(P)H that carry the hydride in the 2 or 6 positions of the nicotinamide base to form ß-NAD(P)+. This activity is thought to alleviate inhibition of multiple ß-NAD(P)-dependent enzymes of primary and secondary metabolism by these isomers. Here we present evidence for a variety of ligand binding phenomena relevant to the function of renalase. We offer evidence of the potential for primary metabolism inhibition with structures of malate dehydrogenase and lactate dehydrogenase bound to the 6-dihydroNAD isomer. The previously observed preference of renalase from Pseudomonas for NAD-derived substrates over those derived from NADP is accounted for by the structure of the enzyme in complex with NADPH. We also show that nicotinamide nucleosides and mononucleotides reduced in the 2- and 6-positions are renalase substrates, but bind weakly. A seven-fold enhancement of acquisition (kred/Kd) for 6-dihydronicotinamide riboside was observed for human renalase in the presence of ADP. However, generally the addition of complement ligands, AMP for mononucleotide or ADP for nucleoside substrates, did not enhance the reductive half-reaction. Non-substrate nicotinamide nucleosides or nucleotides bind weakly suggesting that only ß-NADH and ß-NADPH compete with dinucleotide substrates for access to the active site.


Assuntos
Monoaminoxidase/química , NAD/química , Niacinamida/química , Sítios de Ligação , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Cinética , Ligantes , NADP/química , Especificidade por Substrato
19.
Biochemistry ; 55(38): 5423-33, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27601130

RESUMO

Thiazolinyl imine reductases catalyze the NADPH-dependent reduction of a thiazoline to a thiazolidine, a required step in the formation of the siderophores yersiniabactin (Yersinia spp.) and pyochelin (Pseudomonas aeruginosa). These stand-alone nonribosomal peptide tailoring domains are structural homologues of sugar oxidoreductases. Two closed structures of the thiazolinyl imine reductase from Yersinia enterocolitica (Irp3) are presented here: an NADP(+)-bound structure to 1.45 Å resolution and a holo structure to 1.28 Å resolution with NADP(+) and a substrate analogue bound. Michaelis-Menten kinetics were measured using the same substrate analogue and the homologue from P. aeruginosa, PchG. The data presented here support the hypothesis that tyrosine 128 is the likely general acid residue for catalysis and also highlight the phosphopantetheine tunnel for tethering of the substrate to the nonribosomal peptide synthetase module during assembly line biosynthesis of the siderophore.


Assuntos
Oxirredutases/metabolismo , Sideróforos/biossíntese , Cristalografia por Raios X , Cinética , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Oxirredutases/química , Conformação Proteica
20.
J Am Chem Soc ; 138(29): 9277-93, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27373320

RESUMO

The shikimate pathway of bacteria, fungi, and plants generates chorismate, which is drawn into biosynthetic pathways that form aromatic amino acids and other important metabolites, including folates, menaquinone, and siderophores. Many of the pathways initiated at this branch point transform chorismate using an MST enzyme. The MST enzymes (menaquinone, siderophore, and tryptophan biosynthetic enzymes) are structurally homologous and magnesium-dependent, and all perform similar chemical permutations to chorismate by nucleophilic addition (hydroxyl or amine) at the 2-position of the ring, inducing displacement of the 4-hydroxyl. The isomerase enzymes release isochorismate or aminodeoxychorismate as the product, while the synthase enzymes also have lyase activity that displaces pyruvate to form either salicylate or anthranilate. This has led to the hypothesis that the isomerase and lyase activities performed by the MST enzymes are functionally conserved. Here we have developed tailored pre-steady-state approaches to establish the kinetic mechanisms of the isochorismate and salicylate synthase enzymes of siderophore biosynthesis. Our data are centered on the role of magnesium ions, which inhibit the isochorismate synthase enzymes but not the salicylate synthase enzymes. Prior structural data have suggested that binding of the metal ion occludes access or egress of substrates. Our kinetic data indicate that for the production of isochorismate, a high magnesium ion concentration suppresses the rate of release of product, accounting for the observed inhibition and establishing the basis of the ordered-addition kinetic mechanism. Moreover, we show that isochorismate is channeled through the synthase reaction as an intermediate that is retained in the active site by the magnesium ion. Indeed, the lyase-active enzyme has 3 orders of magnitude higher affinity for the isochorismate complex relative to the chorismate complex. Apparent negative-feedback inhibition by ferrous ions is documented at nanomolar concentrations, which is a potentially physiologically relevant mode of regulation for siderophore biosynthesis in vivo.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Magnésio/metabolismo , Sideróforos/biossíntese , Triptofano/biossíntese , Vitamina K 2/metabolismo , Sítios de Ligação , Domínio Catalítico , Ácido Corísmico/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...